Home - Rasfoiesc.com
Educatie Sanatate Inginerie Business Familie Hobby Legal
Doar rabdarea si perseverenta in invatare aduce rezultate bune.stiinta, numere naturale, teoreme, multimi, calcule, ecuatii, sisteme




Biologie Chimie Didactica Fizica Geografie Informatica
Istorie Literatura Matematica Psihologie

Fizica


Index » educatie » Fizica
» Calculul cadrelor plane prin metoda elementelor finite


Calculul cadrelor plane prin metoda elementelor finite


Calculul cadrelor plane prin metoda elementelor finite

Pentru cadrul cu dimensiunile, reazimile si incastrarile din figura se cere sa se determine deplasarile nodurilor si reactiunile structurii in doua variante de incarcare:

a)      Cadrul incarcat cu fortele ca in figura 1

b)      Cadrul actionat de cedarile de reazime ca in figura 2.

Se vor trasa aliura deformatei si diagramele de eforturi in fiecare varianta de incarcare .

Calculul se va efectua cu ajutorul unui program de calcul automat (AXIS).

Date numerice :

L=6m    E=2,1 105daN/cm2   

H=4m    I0=(40 603)/12cm4

p=10kN/m

F=20kN    v=3cm

Se va prezenta in lucrare modelul structurii discretizate cu deplasarile nodale respectiv fortele nodale pe desen separate. Deasemenea se va face reducerea incarcarii distribuite echivalent la noduri.

REZOLVARE:

Solutionarea problemei necesita urmatoarele etape de calcul:

Discretizarea structurii in elemente finite interconectate in noduri . In urma operatiei de discretizare rezulta un numar de elemente finite    egal cu m - in cazul de fata m=4 si un numar de noduri n=3 puncte nodale (noduri).



Intr-un sistem de axe general XY, fiecarui nod i se acorda cate trei grade de libertate care corespund translatiei nodurilor dupa axele X si Y si rotirii dupa a treia axa perpendiculara pe planul XY .In metoda elementelor finite deplasarile si fortele sunt pozitive daca sunt in sensul poaitiv al axelor iar rotirile sun pozitive in sens orar.

3) Calculul incarcarilor reduse la noduri :

4.Prelucrarea datelor cu ajutorul programului de calcul automat "AXIS"

b)





Politica de confidentialitate





Copyright © 2024 - Toate drepturile rezervate