Home - Rasfoiesc.com
Educatie Sanatate Inginerie Business Familie Hobby Legal
Doar rabdarea si perseverenta in invatare aduce rezultate bune.stiinta, numere naturale, teoreme, multimi, calcule, ecuatii, sisteme




Biologie Chimie Didactica Fizica Geografie Informatica
Istorie Literatura Matematica Psihologie

Fizica


Index » educatie » Fizica
» Ecuatia Schrodinger atemporala (independenta de timp ) . Stari stationare .


Ecuatia Schrodinger atemporala (independenta de timp ) . Stari stationare .


Ecuatia Schrodinger atemporala (independenta de timp ) . Stari stationare .

Daca energia potentiala V nu depinde de timp , putem factoriza functia de unda :

Situatia se intalneste la sistemele clasice a caror energie este o constanta a miscarii . Introducand functia de unda facttorizata in ecuatia Schrodinger dependenta de timp :

, obtinem :

,

sau , prin separarea variabilelor : .

Egalitatea este posibila daca fiecare membru este egal cu o constanta pe care o vom nota E :

unde am notat .

De asemenea avem ecuatia :

Aceasta este ecuatia lui Schrodinger independenta de timp . Ea este ecuatia cu valori proprii a operaorului hamiltonian , E fiind valorile proprii si functiile proprii . De aceea vom atribui constantei E semnificatia de energie a sistemului cuantic . Cand sistemul se afla intr-o stare de functie de unda :



,

spunem ca se afla intr-o stare stationara de energie E in functia de unda independenta de timp este numita functie de unda a starii stationaredesi difera de functia de unda adevarata prin factorul de faza

Functiile de unda care satisfac ecuatia Schrodinger independenta de timp trebuie sa indeplineasca asa-zisele contii standard:

-sa fie marginite :

-sa fie continue impreuna cu derivatele lor (chiar si in punctele in care V prezinta discontinuitati ) ;

-sa fie univoce :

-sa fie ortonormate : .





Politica de confidentialitate





Copyright © 2025 - Toate drepturile rezervate