Aeronautica | Comunicatii | Constructii | Electronica | Navigatie | Pompieri | |
Tehnica mecanica |
Teoria Sistemelor si Reglajelor Automate
Lucrare Personala
1.Studiul elementului aperiodic de ordin 1
2.Studiul SLN invariant de ordinul 2
I.Studiul elementului aperiodic de ordinul 1
1.1Modele matematice de tipul intrare-iesire:ecuatia diferentiala,functia de transfer,caracteristici de frecventa.
a)=>T=K∙r
b)
c)W(jω)=A(ω)∙
1.2.Scheme de modelare,in Simulink,pentru calculul raspunsului indicial(K=1,T=5(s))
1.2.1.Schema de modelare in baza ecuatiei diferentiale;
1.2.2.Schema de modelare in baza functiei de transfer
1.3.Calculul raspunsului indicial si a functiei pondere in MATLAB.
figure(1)
%Raspunsul indicial al EIO1
t=0:0.01:20;
num=[1];den=[5 1];
ys=step(num,den,t);
v=t;df=diff(v)./diff(t);df1=0.95*df;td=t(2:length(t));
plot(t,ys,'-r',td,df,'-k',td,df1,'-k'),grid
figure(2)
%Calculul functiei pondere pt EIO1
t=0:0.01:30;
num=[1];den=[5 1];yi=impulse(num,den,t);
plot(t,yi,'-r'),grid
title('Functia pondere a EIO1')
1.4.Determinarea performantelor in raport cu referinta treapta unitara pentru K=1 si T=5(s),utilizand una din variantele 1.2.1,1.2.2. sau 1.3.
t=0:0.01:40;
T=5;
y=1-exp(-t/T);
v=t;
df=diff(v)./diff(t);
df1=0.95*df;df2=1.05*df;
td=t(2:length(t));
plot(t,y,'-r',td,df,'-k',td,df1,'-b',td,df2,'-k'),grid
xlabel('t(s)')
ylabel('y(t)')
[X,Y]=ginput
1.5.Calculul caracteristicilor de frecventa U(ω),V(ω),A(ω),φ(ω),pentru K=3 si T=5(s).
k=3;T=5;
%omega=w
w=-10:0.01:10;
figure(1)
%caract.U(omega)
subplot(221)
u=k./(1+(w*T).^2);plot(w,u,'-k'),grid
title('Caract. U(omega)')
xlabel('omega'),ylabel('U(w)')
%Caract.V(omega)
subplot(222)
v=-(k*w*T)./(1+(w*T).^2);plot(w,v,'-k'),grid
title('Caract. V(omega)')
xlabel('omega'),ylabel('V(w)')
%Caract.A(omega)
subplot(223)
a=sqrt(u.^2+v.^2);plot(w,a,'-k'),grid
title('Caract. A(omega)')
xlabel('omega'),ylabel('A(w)')
%Caract.Fi(omega)
subplot(224)
Fi=-atan(w*T);plot(w,Fi,'-k'),grid
title('Caract. Fi(omega)')
xlabel('omega'),ylabel('Fi(w)')
figure (2)
%Locul de transfer
w=-60:0.01:60;
u=k./(1+(w*T).^2);v=-(k*w*T)./(1+(w*T).^2);
plot(k./(1+(w*T).^2),-(k*w*T)./(1+(w*T).^2),'-k'),grid
title('Locul de transfer')
xlabel('U(omega)'),ylabel('V(omega)')
figure(3)
%Caract. lg. de pulsatie A(omega),Fi(omega)
w=logspace(-1,1,200);
num=[3];den=[5 1];[mag,phase,w]=bode(num,den);
subplot(211)
semilogx(w,20*log10(mag)),grid
title('Caract.lg.A(omega)')
xlabel('omega'),ylabel('Adb(omega)')
subplot(212)
semilogx(w,phase),grid
title('Caract.lg.Fi(omega)')
xlabel('omega'),ylabel('Fi(omega)')
1.6.Calculul caracteristicilor logaritmice de frecventa A(ω) si φ(ω),cu programe in MATLAB(K=10,T=5(s)).
%Caracteristici logaritmice de pulsatie A(omega),Fi(omega)
w=logspace(-1,1,200);
num=[3];den=[5 1];[mag,phase,w]=bode(num,den);
subplot(211)
semilogx(w,20*log10(mag)),grid
title('Caracteristica logaritmica amplitudine-pulsatie')
xlabel('omega(rad.sec)'),ylabel('Adb(omega)')
subplot(212)
semilogx(w,phase),grid
title('Caracteristica logaritmica faza-pulsatie')
xlabel('omega(rad.sec)'),ylabel('fi(grade)')
II.Studiul SLN invariant de ordinul 2
2.1.Modele matematice de tipul intrare-iesire si respectiv intrare-stare-iesire(T=1(s));
;;
;;
;
Y(t)=C∙X(t).
2.2.Scheme de modelare in Simulink(T=1(s))
2.2.1.Schema de modelare in baza ecuatiei diferentiale;
2.2.2.Schema de modelare in baza functiei de transfer;
2.2.3.Intocmirea schemei de modelareutilizand variabilele de faza
2.3.Calculul functiei pondere,pentru ξ=0.25 si ω=2π cu program in MATLAB.
t=0:0.01:4;
csi=0.25;w=2*pi;%w=omega
a=exp(-csi*w*t);
b=sqrt(1-csi^2);fi=acos(csi);
c=w*b;d=sin(c*t+fi);
y=1-(a/b).*d;
yst=1;ym=max(y)
sigma=ym-yst
tr1=log(0.05*b)/(-csi*w)
tr2=4/(csi*w)
v=t;df=diff(v)./diff(t);
df1=1.05*df;df2=0.95*df
td=t(2:length(t))
plot(t,y,'-r',td,df,'-b',td,df1,'-k',td,df2,'-k'),grid
xlabel('t(s)')
ylabel('y(t)')
gtext('Raspunsul SLN2 cu csi=0.25')
2.4.Calculul raspunsului indicial pentru ξ=0.5 si ω=2π utilizand functia de transfer si variabilele de stare,cu program in MATLAB.
num=[3 2];num=conv(num,[1 1]);num=conv(num,[2 3]);num=conv(num,[1 1 1])
den=[1 2 3 4 3 1]
[A,B,C,D]=tf2ss(num,den)
iu=1;%Nr. de intrari
[num1,den1]=ss2tf(A,B,C,D,iu)
[Z,P,K]=ss2zp(A,B,C,D,iu)
[A1,B1,C1,D1]=zp2ss(Z,P,K)
[num2,den2]=zp2tf(Z,P,K)
w=2*pi;csi=0.25;A=[0 1;-w^2 -2*csi*w];B=[0;w^2];C=[1 0];D=[0];
t=0:0.001:4;
figure(1)
% calc rasp imdicial
x0=[0;0];%vect. starii initiale
v=t;u=diff(v)./diff(t);df1=1.05*u;df2=0.95*u;
td=t(2:length(t));
[y,x]=lsim(A,B,C,D,u,td,x0);
plot(td,y,'-r',td,df1,'-k',td,df2,'-k'),grid
2.5.Determinarea performantelor in raport cu referinta treapta unitara pentru T=1(s);ξ=0.25;0.707;1.0;3.0.,utilizand una din variantele 2.2.1.,2.2.2.,2.2.3.
figure(1)
t=0:0.01:7;
csi1=0.25;csi2=0.707;w=2*pi;
num1=[w^2];num2=num1;
den1=[1 2*csi1*w w^2];
den2=[1 2*csi2*w w^2];
ys1=step(num1,den1,t);
ys2=step(num2,den2,t);
ym1=max(ys1);yst=1;sigma1=ym1-yst
ym2=max(ys2);sigma2=ym2-yst
v=t;df=diff(v)./diff(t);
df1=0.95*df;df2=1.05*df;td=t(2:length(t));
plot(t,ys1,'-r',t,ys2,'-b',td,df,'-k',td,df1,'-k',td,df2,'-k'),grid
figure(2)
%SLN cu csi=1.0 si csi=3.0
t=0:0.01:7;
csi1=1.0;csi2=3.0;w=2*pi;
y1=1-(1+w*t).*exp(-w*t);
r21=-62.1979;r22=-0.6347;
y2=1-(r22/(r22-r21))*exp(r21*t)+(r21/(r22-r21))*exp(r22*t);
v=t;df=diff(v)./diff(t);df1=0.95*df;
td=t(2:length(t));
plot(t,y1,'-r',t,y2,'-b',td,df1,'-k'),grid
Copyright © 2024 - Toate drepturile rezervate