Home - Rasfoiesc.com
Educatie Sanatate Inginerie Business Familie Hobby Legal
Meseria se fura, ingineria se invata.Telecomunicatii, comunicatiile la distanta, Retele de, telefonie, VOIP, TV, satelit




Aeronautica Comunicatii Constructii Electronica Navigatie Pompieri
Tehnica mecanica

Electronica


Index » inginerie » Electronica
» Teoria Sistemelor si Reglajelor Automate


Teoria Sistemelor si Reglajelor Automate


Teoria Sistemelor si Reglajelor Automate

Lucrare Personala

1.Studiul elementului aperiodic de ordin 1



2.Studiul SLN invariant de ordinul 2

I.Studiul elementului aperiodic de ordinul 1

1.1Modele matematice de tipul intrare-iesire:ecuatia diferentiala,functia de transfer,caracteristici de frecventa.

a)=>T=K∙r

b)

c)W(jω)=A(ω)∙

1.2.Scheme de modelare,in Simulink,pentru calculul raspunsului indicial(K=1,T=5(s))

1.2.1.Schema de modelare in baza ecuatiei diferentiale;

1.2.2.Schema de modelare in baza functiei de transfer

1.3.Calculul raspunsului indicial si a functiei pondere in MATLAB.

figure(1)

%Raspunsul indicial al EIO1

t=0:0.01:20;

num=[1];den=[5 1];

ys=step(num,den,t);

v=t;df=diff(v)./diff(t);df1=0.95*df;td=t(2:length(t));

plot(t,ys,'-r',td,df,'-k',td,df1,'-k'),grid

figure(2)

%Calculul functiei pondere pt EIO1

t=0:0.01:30;

num=[1];den=[5 1];yi=impulse(num,den,t);

plot(t,yi,'-r'),grid

title('Functia pondere a EIO1')

1.4.Determinarea performantelor in raport cu referinta treapta unitara pentru K=1 si T=5(s),utilizand una din variantele 1.2.1,1.2.2. sau 1.3.

t=0:0.01:40;

T=5;

y=1-exp(-t/T);

v=t;

df=diff(v)./diff(t);

df1=0.95*df;df2=1.05*df;

td=t(2:length(t));

plot(t,y,'-r',td,df,'-k',td,df1,'-b',td,df2,'-k'),grid

xlabel('t(s)')

ylabel('y(t)')

[X,Y]=ginput

1.5.Calculul caracteristicilor de frecventa U(ω),V(ω),A(ω),φ(ω),pentru K=3 si T=5(s).

k=3;T=5;

%omega=w

w=-10:0.01:10;

figure(1)

%caract.U(omega)

subplot(221)

u=k./(1+(w*T).^2);plot(w,u,'-k'),grid

title('Caract. U(omega)')

xlabel('omega'),ylabel('U(w)')

%Caract.V(omega)

subplot(222)

v=-(k*w*T)./(1+(w*T).^2);plot(w,v,'-k'),grid

title('Caract. V(omega)')

xlabel('omega'),ylabel('V(w)')

%Caract.A(omega)

subplot(223)

a=sqrt(u.^2+v.^2);plot(w,a,'-k'),grid

title('Caract. A(omega)')

xlabel('omega'),ylabel('A(w)')

%Caract.Fi(omega)

subplot(224)

Fi=-atan(w*T);plot(w,Fi,'-k'),grid

title('Caract. Fi(omega)')

xlabel('omega'),ylabel('Fi(w)')

figure (2)

%Locul de transfer

w=-60:0.01:60;

u=k./(1+(w*T).^2);v=-(k*w*T)./(1+(w*T).^2);

plot(k./(1+(w*T).^2),-(k*w*T)./(1+(w*T).^2),'-k'),grid

title('Locul de transfer')

xlabel('U(omega)'),ylabel('V(omega)')

figure(3)

%Caract. lg. de pulsatie A(omega),Fi(omega)

w=logspace(-1,1,200);

num=[3];den=[5 1];[mag,phase,w]=bode(num,den);

subplot(211)

semilogx(w,20*log10(mag)),grid

title('Caract.lg.A(omega)')

xlabel('omega'),ylabel('Adb(omega)')

subplot(212)

semilogx(w,phase),grid

title('Caract.lg.Fi(omega)')

xlabel('omega'),ylabel('Fi(omega)')

1.6.Calculul caracteristicilor logaritmice de frecventa A(ω) si φ(ω),cu programe in MATLAB(K=10,T=5(s)).

%Caracteristici logaritmice de pulsatie A(omega),Fi(omega)

w=logspace(-1,1,200);

num=[3];den=[5 1];[mag,phase,w]=bode(num,den);

subplot(211)

semilogx(w,20*log10(mag)),grid

title('Caracteristica logaritmica amplitudine-pulsatie')

xlabel('omega(rad.sec)'),ylabel('Adb(omega)')

subplot(212)

semilogx(w,phase),grid

title('Caracteristica logaritmica faza-pulsatie')

xlabel('omega(rad.sec)'),ylabel('fi(grade)')

II.Studiul SLN invariant de ordinul 2

2.1.Modele matematice de tipul intrare-iesire si respectiv intrare-stare-iesire(T=1(s));

;;

;;

;

Y(t)=C∙X(t).

2.2.Scheme de modelare in Simulink(T=1(s))

2.2.1.Schema de modelare in baza ecuatiei diferentiale;

2.2.2.Schema de modelare in baza functiei de transfer;

2.2.3.Intocmirea schemei de modelareutilizand variabilele de faza

2.3.Calculul functiei pondere,pentru ξ=0.25 si ω=2π cu program in MATLAB.

t=0:0.01:4;

csi=0.25;w=2*pi;%w=omega

a=exp(-csi*w*t);

b=sqrt(1-csi^2);fi=acos(csi);

c=w*b;d=sin(c*t+fi);

y=1-(a/b).*d;

yst=1;ym=max(y)

sigma=ym-yst

tr1=log(0.05*b)/(-csi*w)

tr2=4/(csi*w)

v=t;df=diff(v)./diff(t);

df1=1.05*df;df2=0.95*df

td=t(2:length(t))

plot(t,y,'-r',td,df,'-b',td,df1,'-k',td,df2,'-k'),grid

xlabel('t(s)')

ylabel('y(t)')

gtext('Raspunsul SLN2 cu csi=0.25')

2.4.Calculul raspunsului indicial pentru ξ=0.5 si ω=2π utilizand functia de transfer si variabilele de stare,cu program in MATLAB.

num=[3 2];num=conv(num,[1 1]);num=conv(num,[2 3]);num=conv(num,[1 1 1])

den=[1 2 3 4 3 1]

[A,B,C,D]=tf2ss(num,den)

iu=1;%Nr. de intrari

[num1,den1]=ss2tf(A,B,C,D,iu)

[Z,P,K]=ss2zp(A,B,C,D,iu)

[A1,B1,C1,D1]=zp2ss(Z,P,K)

[num2,den2]=zp2tf(Z,P,K)

w=2*pi;csi=0.25;A=[0 1;-w^2 -2*csi*w];B=[0;w^2];C=[1 0];D=[0];

t=0:0.001:4;

figure(1)

% calc rasp imdicial

x0=[0;0];%vect. starii initiale

v=t;u=diff(v)./diff(t);df1=1.05*u;df2=0.95*u;

td=t(2:length(t));

[y,x]=lsim(A,B,C,D,u,td,x0);

plot(td,y,'-r',td,df1,'-k',td,df2,'-k'),grid

2.5.Determinarea performantelor in raport cu referinta treapta unitara pentru T=1(s);ξ=0.25;0.707;1.0;3.0.,utilizand una din variantele 2.2.1.,2.2.2.,2.2.3.

figure(1)

t=0:0.01:7;

csi1=0.25;csi2=0.707;w=2*pi;

num1=[w^2];num2=num1;

den1=[1 2*csi1*w w^2];

den2=[1 2*csi2*w w^2];

ys1=step(num1,den1,t);

ys2=step(num2,den2,t);

ym1=max(ys1);yst=1;sigma1=ym1-yst

ym2=max(ys2);sigma2=ym2-yst

v=t;df=diff(v)./diff(t);

df1=0.95*df;df2=1.05*df;td=t(2:length(t));

plot(t,ys1,'-r',t,ys2,'-b',td,df,'-k',td,df1,'-k',td,df2,'-k'),grid

figure(2)

%SLN cu csi=1.0 si csi=3.0

t=0:0.01:7;

csi1=1.0;csi2=3.0;w=2*pi;

y1=1-(1+w*t).*exp(-w*t);

r21=-62.1979;r22=-0.6347;

y2=1-(r22/(r22-r21))*exp(r21*t)+(r21/(r22-r21))*exp(r22*t);

v=t;df=diff(v)./diff(t);df1=0.95*df;

td=t(2:length(t));

plot(t,y1,'-r',t,y2,'-b',td,df1,'-k'),grid





Politica de confidentialitate





Copyright © 2024 - Toate drepturile rezervate