Biologie | Chimie | Didactica | Fizica | Geografie | Informatica | |
Istorie | Literatura | Matematica | Psihologie |
Calculul vectorial foloseste reperul tri-ortogonal cartezian drept. Reper drept este reperul la care, rotind in sens direct trigonometric planul in jurul axei , axa ajunge in pozitia initiala a axei dupa un unghi de .
a) legati (exemplu: momentul fortei in raport cu un pol), sunt caracterizati prin modul, directie, sens si punct de aplicatie;
b) alunecatori (exemplu: forta pe dreapta suport), sunt caracterizati prin modul, directie si sens;
c) liberi caracterizati prin: modul, sens si o directie paralela cu o directie data.
in care sunt proiectiile vectorului pe sistemul de referinta.
Modulul vectorului:
Adunarea (compunere) se face cu:
regula paralelogramului (Fig. I.1 - a)
regula triunghiului (Fig. I.1- b)
(rezultanta vectorilor) (I. )
Scaderea (Fig. I.2)
(I. )
Daca si , atunci:
(I. )
Inmultirea unui scalar cu un vector - rezultatul este tot un vector
(I. )
Directia: are aceeasi directie cu
Sensul lui :daca are acelasi sens cu
are sens opus lui
Marimea:
Versor este un vector unitate pe o directie orientata (Fig. I.3).
Expresia analitica a versorului: raportul intre expresia analitica a vectorului si modulului sau.
Descompunerea vectorilor dupa doua directii in plan (Fig. I.4) se face cu regula paralelogramului:
(I. )
descompunerea vectorilor dupa trei directii in spatiu (Fig. I.5)
(I. )
produsul scalar (Fig. I. )
(I. )
Proprietati
comutativitate: ;
conditia de ortogonalitate: , rezulta ca produsul scalar este zero;
conditia de paralelism: , rezulta ca produsul scalar este egal cu produsul modulelor vectorilor;
distributivitate
Produsul scalar al versorilor
etc. (I. )
Daca
produsul scalar este:
(I. )
Modulul unui vector
(I. )
Proiectia unui vector pe o axa se obtine inmultind vectorul cu versorul axei (Fig. I.7).
(I. )
Produs vectorial:
Marimea produsului vectorial este aria paralelogramului construit cu cei doi vectori ca laturi (Fig. I.8).
, (I. )
Proprietati
anticomutativitatea
distributivitatea:
Expresia analitica
Produsul vectorial se efectueaza fie inmultind termen cu termen, tinand cont de regula de inmultire a versorilor fie cu ajutorul determinantului.
Produsul vectorial al versorilor:
, ,
(I. )
(I. )
Produs mixt
(I. )
(I. )
Produs dublu vectorial
Produsul dublu vectorial se poate dezvolta fie efectuand pe rand produsele vectoriale,
(I. )
fie folosind relatia:
(I. )
Aplicatii:
1) Ecuatia vectoriala a dreptei (Fig. I.
2) Conditia ca un vector sa fie perpendicular pe un plan (Fig. I.10) (pe o dreapta): produsul scalar intre vectorul normal si un vector din plan sa fie zero.
Fig. I.
Fie vectorii .
Sa se calculeze: versorii vectorilor , suma , diferenta , produsul scalar , produsul vectorial , produsul dublu vectorial si produsul mixt . Sa se determine unghiul dintre vectorii si , valoarea proiectiei vectorului pe si a lui pe . Sa se reprezinte toti trei vectorii cu originea O in sistemul cartezian.
Rezolvare
Expresia analitica a unui vector este egala cu expresia analitica a versorului lui inmultita cu modului vectorului, .
Rezulta expresia analitica a versorului:
Se calculeaza suma vectoriala insumand termenii asemenea:
Diferenta vectorilor se obtine prin scaderea termenilor asemenea:
Produsul scalar al vectorilor, este:
Produsul vectorial ,
Produsul dublu vectorial se poate dezvolta fie efectuand pe rand produsele vectoriale, fie folosind relatia:
Produsul mixt :
Unghiul dintre vectorii si se determina din relatia produsului scalar:
Marimea proiectiei vectorului pe vectorul este egala cu produsul scalar intre vectorul si versorul vectorului :
Proiectia vectorului pe vectorul :
Reprezentarea vectorilor pe un reper cartezian cu originea in O (Fig. I. ):
|
Fie vectorii conform tabelului 1.1
Sa se calculeze:
Tabel I.1
Nr. |
Vector |
x |
y |
z |
Nr. |
Vector |
x |
y |
z |
|
1 |
|
5 |
7 |
|||||
1 |
|
5 |
-1 |
2 |
|
6 |
2 |
||
|
4 |
0 |
0 |
|
0 |
0 |
|||
|
|
8 |
2 |
||||||
2 |
|
3 |
1 |
|
|
1 |
0 | ||
|
0 |
6 |
4 |
|
4 |
0 |
|||
|
4 |
3 |
|
3 |
0 |
||||
3 |
|
0 |
5 |
3 |
|
5 |
0 |
||
|
8 |
3 |
|
4 |
8 |
||||
|
5 |
-7 |
3 |
|
8 | ||||
4 |
|
0 |
8 |
2 |
|
4 |
0 |
||
|
2 |
-1 |
3 |
|
5 | ||||
|
1 |
-7 |
9 |
|
0 |
0 | |||
5 |
|
5 |
-2 |
0 |
|
4 | |||
|
7 |
0 |
|
8 |
1 |
||||
|
4 |
-7 |
|
0 | |||||
6 |
|
2 |
0 |
|
7 |
6 |
|||
|
2 |
-3 |
0 |
|
6 |
0 |
|||
|
2 |
-5 |
|
0 |
0 |
||||
7 |
|
6 |
0 |
7 |
|
5 |
7 |
||
|
0 |
5 |
|
3 |
0 | ||||
|
0 |
4 |
2 |
| |||||
8 |
|
-5 |
0 |
|
8 |
0 |
|||
|
2 |
-8 |
3 |
|
0 |
8 | |||
|
4 |
8 |
|
|
6 |
0 |
|||
9 |
|
0 |
0 |
|
0 |
0 | |||
|
4 |
-6 |
0 |
|
2 | ||||
|
4 |
-2 |
8 |
| |||||
|
0 |
-5 |
7 |
|
0 |
0 | |||
|
0 |
-6 |
|
0 | |||||
|
5 |
0 |
|
0 |
|||||
|
5 |
-7 |
3 |
|
0 | ||||
|
2 |
0 |
|
6 |
7 |
||||
|
8 |
-6 |
0 |
|
0 |
0 | |||
|
6 |
-2 |
0 |
|
4 | ||||
|
3 |
-2 |
|
5 |
7 |
||||
|
-3 |
8 |
|
2 | |||||
|
1 |
5 |
0 |
|
0 |
4 | |||
|
6 |
7 |
0 |
|
6 |
0 |
|||
|
8 |
-2 |
|
8 |
8 |
||||
|
2 |
-7 |
0 |
|
3 |
0 | |||
|
0 |
0 |
|
1 |
0 |
||||
|
-2 |
0 |
| ||||||
|
5 |
8 |
|
1 |
1 | ||||
|
2 |
0 |
|
5 |
0 |
Copyright © 2025 - Toate drepturile rezervate